

Found X results

No results ...

Fill PDF forms in an AEM Service

Contents

	Dependencies: Apache PDFBox
	PDF Service	Load PDF Document from DAM
	Fill form fields
	Glue it all together

	PDF Servlet
	Footnotes

Date
25.05.2017
Reading time
3 Minutes
Comments
0 comments
Tags
	java
	aem
	pdf

Contents
	Dependencies: Apache PDFBox
	PDF Service	Load PDF Document from DAM
	Fill form fields
	Glue it all together

	PDF Servlet
	Footnotes

If you want to provide a download of customized PDF files, you can go the full-fledged way and buy into the Adobe world or build a slim custom solution which brings no additional cost.
This post shows a simple usecase where a PDF form is uploaded to DAM and later filled inside an OSGi service and delivered to the user by a Servlet.
Dependencies: Apache PDFBox
There are multiple open source PDF libraries we could use, but in the end Apache PDFBox1 is the weapon of choice. It is well documented, many examples are available and it is compatible with OSGi out of the box (no need for any wrapper etc).
In older versions of CQ, Adobe provided PDFBox as a default dependency but since CQ5.6 the complete PDF handling (extract metadata, generate thumbnails etc) is by a custom library (Gibson).
You need to include two dependencies to your pom.xml and make sure, they are deployed to AEM:
<dependency>
 <groupId>org.apache.pdfbox</groupId>
 <artifactId>pdfbox</artifactId>
 <version>2.0.6</version>
</dependency>

<dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.2</version>
</dependency>

PDF Service
As we want a reusable solution, we will build all logic into a OSGi Service instead of the Servlet or some other class. You’ll be able to provide multiple implementations of the Service if required and generate different PDFs in each one.
The following snippet shows the required methods in our PDF Service:
@Component(immediate = true)
@Service(PDFService.class)
public class PDFService {

 public void createPDF(SlingHttpServletRequest request, OutputStream outputstream) throws IOException;

 protected PDDocument getPDDocument(SlingHttpServletRequest request) throws IOException;

 protected Asset getAsset(SlingHttpServletRequest request);

 protected void setFormField(String fieldName, String fieldValue);

}

Load PDF Document from DAM
 // TODO: should not be static, depends on the requirements
 private static final String PDF_PATH = "/content/dam/foo/bar/ipsum.pdf";

 /**
 * @return PDDocument instance of the PDF saved in DAM or null, if no asset can be loaded
 */
 protected PDDocument getPDDocument(SlingHttpServletRequest request) throws IOException {
 Asset pdfAsset = getAsset(request);
 return pdfAsset != null ? PDDocument.load(pdfAsset.getOriginal().getStream()) : null;
 }

 /**
 * @return Asset from DAM or null, if asset can't be loaded
 */
 protected Asset getAsset(SlingHttpServletRequest request){
 ResourceResolver resourceResolver = request.getResourceResolver();
 Resource assetResource = resourceResolver.getResource(PDF_PATH);
 if(assetResource != null) {
 return assetResource.adaptTo(Asset.class);
 }
 return null;
 }

Fill form fields
 /**
 * Fills the given field with the given value. If field can't be found, nothing happens
 */
 protected void setFormField(PDAcroForm acroform, String fieldName, String fieldValue) {
 PDField field = acroform.getField(fieldName);
 if(field != null){
 field.setValue(fieldValue);
 }
 }

Glue it all together
 public void createPDF(SlingHttpServletRequest request, OutputStream outputstream) throws IOException {
 try(PDDocument pddocument = getPDDocument(request)){
 if(pddocument != null){
 PDDocumentCatalog docCatalog = pddocument.getDocumentCatalog();
 PDAcroForm acroForm = docCatalog.getAcroForm();
 if(acroForm != null){
 //TODO: populate fields depending on the PDF
 setFormField(acroForm, "test_field", "test_value");
 document.save(outputstream);
 }
 }
 }
 }

PDF Servlet
Now as all logic is encapsulated in the Service, the Servlet can simply call the service and hand over the response’s OutputStream. If you need to pass any parameters (e.g. Query-Parameters) from the Request to the Service, you need to extend the Servlet accordingly.
@SlingServlet(resourceTypes = "/apps/your/resource/type"
extensions = "pdf", methods = "GET")
public class PDFPostServlet extends SlingAllMethodsServlet {

 @Reference
 private PDFService pdfService;

 @Override
 protected void doGet(SlingHttpServletRequest request, SlingHttpServletResponse response) throws IOException {
 try{
 // set Response Type to PDF
 response.setContentType("application/pdf");
 pdfService.createPDF(request, response.getOutputStream();)
 }
 catch(IOException ex){
 response.setContentType(ContentType.HTML);
 response.sendError(HttpStatus.SC_INTERNAL_SERVER_ERROR);
 }
 }
}

Footnotes

	Apache PDFBox ↩︎

Tags
	java
	aem
	pdf

Comments

Related
02.03.2017
Sample Application for the AEM-Solr Integration
After two quite theoretic posts about the basics of Solr in AEM and the schema configuration it’s time for a practical one. If you have a local AEM instance running, you can use the application I pushed into the solr-aem Github repository1 to get a running website with Solr integration. The README.md2 gives a detailed view on the application therefor I constrain the blog post to the basics. The application includes a simple Search page where Paging3, Highlighting4 and Spell checking5 are used.

02.03.2017
Setup a Solr schema.xml for AEM
Now that we have successfully convinced AEM to use Solr as Indexer, the next step is to create a Schema which is used by Solr for Index/Query Processing. Why do we need a schema? Solr does not know anything about your data structure but you want it to perform complex operation like fulltext searches, faceting etc. To allow Solr to create a fast index, you need to define which fields you want to index and which operations should be performed upon index or query1.

27.02.2017
Create an AEM index utilizing Solr
Last month I discussed the options to use Elasticsearch as search engine for AEM content. The presented approach required a custom implementation of a replication agent available on Github1. As an alternative I’ll demonstrate how the build in functionality of Jackrabbit Oak2 to index into Solr3 can be used. Just like Elasticsearch4 Solr is a search platform based on Lucene5. By default Jackrabbit uses the embedded Lucene index in AEM to create an index both for internal queries and custom, application-specific queries (using XPath and SQL-2).

18.02.2017
Import Wikipedia Pages into AEM
Testing a search-engine like [ElasticSearch in AEM]({{ site.baseurl }}{% post_url 2017-01-18-elasticsearch-aem %}) requires a certain amount of pages you can index and search into. There are multiple great sources for content available but (of course) none of them provides an export into AEM. For example you can download dumps from Stackoverflow1 or Wikipedia2. I think espacially Wikipedia dumps are a quite interesting source of content as they are available in nearly (?

07.02.2017
AEM: Map local filesystem into crx repository
With the wide introduction of sightly into AEM development it became more and more useful to mount a Filesystem into a local AEM instance. Now you can edit sightly and other files in your favorite IDE and see the changes in AEM without the need of a deployment. On the sling website you can find and download1 the FileSystem Provider which brings this functionality. You can install it in the Felix console and need to configure the local path and the webapp root in crx.

31.01.2017
AEM: Rebuild Client Libraries
In some situations you might need to rebuild your client libraries manually.

	Impressum
	Rechtliche Hinweise

	
	
	

Page generated: 2024-03-08T22:04:55+0000
This website uses cookies to ensure you get the best experience. Learn moreGot it!

